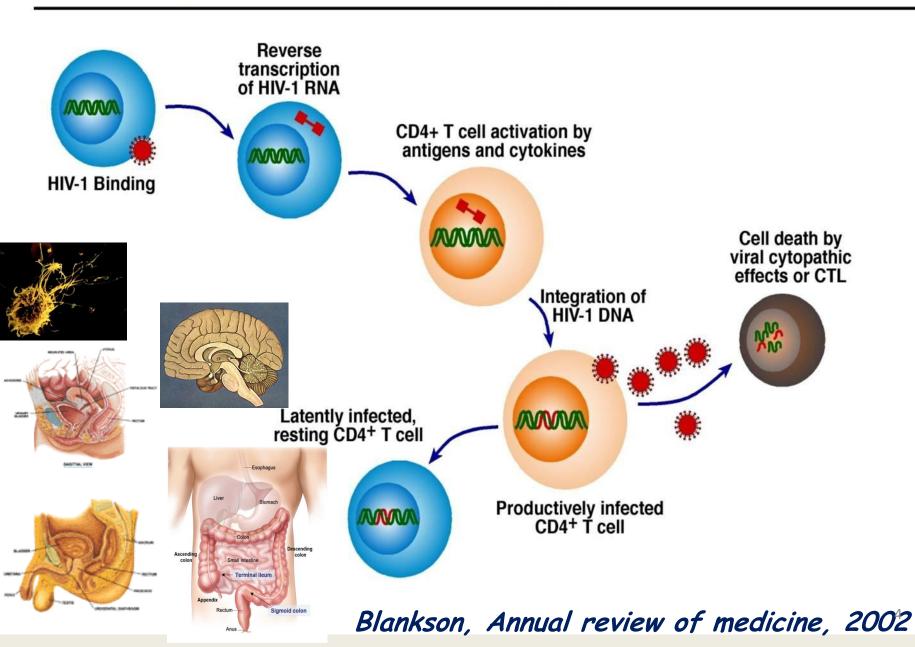
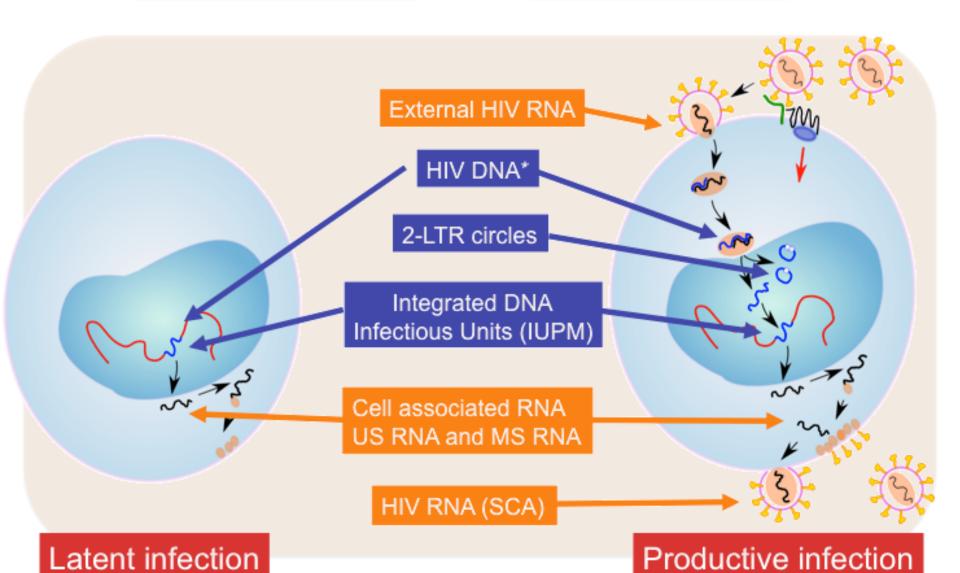

ERADICATION: PANORAMA DES PISTES DE RECHERCHE

Dr Antoine Chéret SURMIV Tourcoing

Limite des antirétroviraux



Danish HIV Cohort study n=3990; HIV neg controls n=379,872


Lohse et al., Ann Int Med 2007: 146: 87

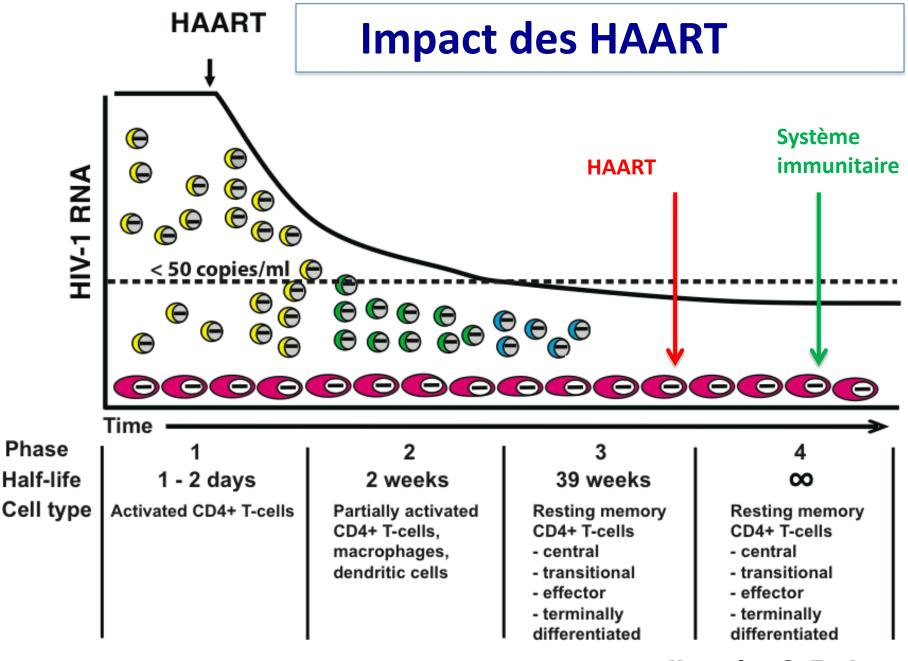
Envisager l'éradication?

Cycle et pathogénie du VIH

Sang Réservoirs Tissulaires

La Latence Virale est établie dans les différentes sous populations lymphocytaires

Circulation périphérique/Tissus Moelle osseuse Thymus Central Effector/ **Naive** memory transitional **Cellules** Transitionelle mémoire Centrale mémoire Cellules multipotentes


Chun et al., *Nature 1997;* Finzi et al., *Science* 1997; Brooks et al., *Nat Med* 2001 Chomont et al., *Nat Med* 2009; Dai et al., J Virol 2009; Carter et al., *Nat Med* 2010;; Wightman et al., *J Infect Dis* 2010, Descours, Vienna 2010.

Latent reservoir

Longue demi-vie

Proliferation

ivalves i

d'après S.Palmer

Quelles stratégies pour cibler les réservoirs HIV?

Améliorer la diffusion des médicaments dans les tissus profonds

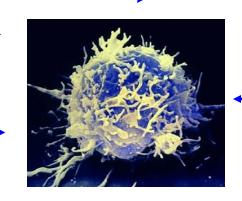
Intensification des HAART

Augmenter les réponse immunitaires spécifiques

Immunomodulateurs

Traitement par HAART intense et précoce

Débloquer les mécanismes de latence


Combinaison, de différentes stratégies

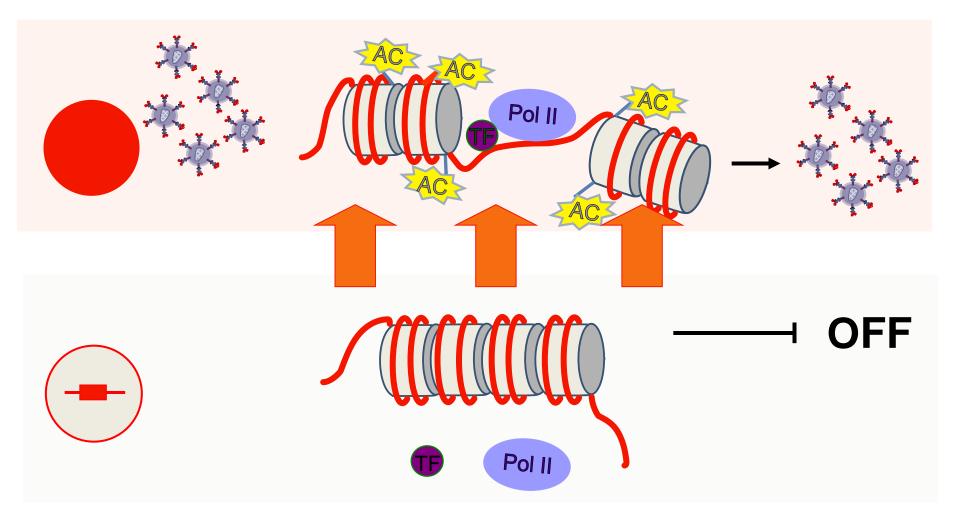
Quelles stratégies pour cibler les réservoirs HIV?

Améliorer la diffusion des médicaments dans les tissus profonds

Intensification des HAART

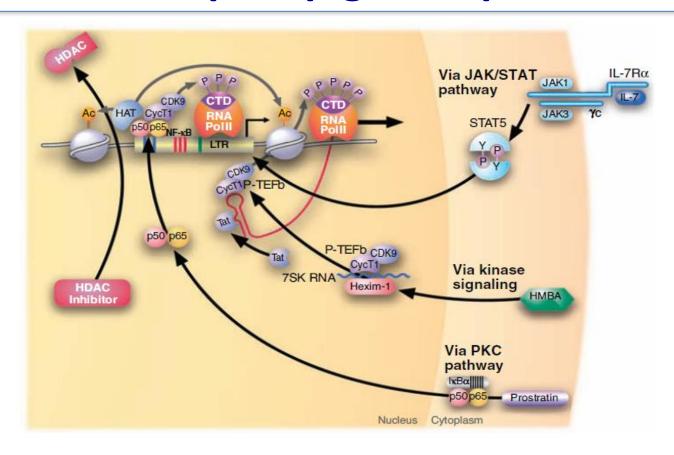
Augmenter les réponse immunitaires spécifiques

Immunomodulateurs


Traitement par HAART intense et précoce

Agir sur les mécanismes de latence

Combinaison, de différentes stratégies


Activer la transcription virale

Activer les gènes VIH "ON"

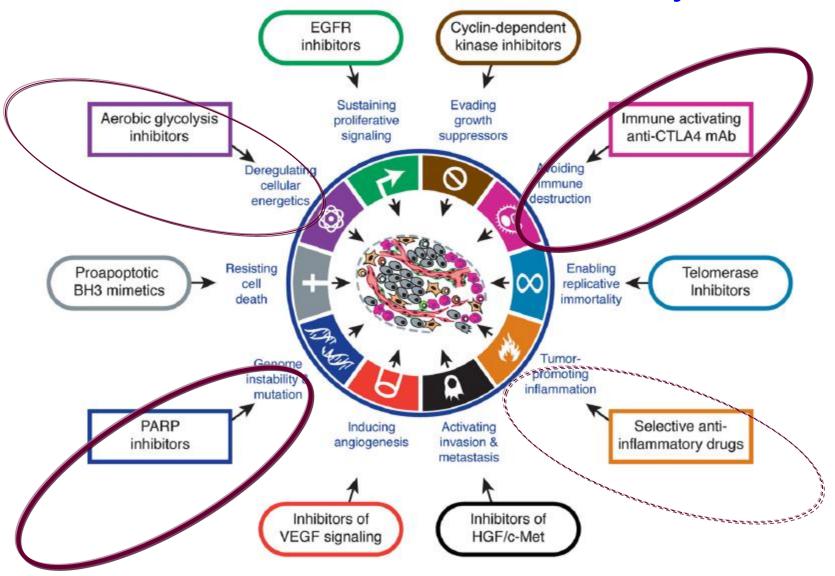
Bolden et al., *Nat Rev Drug Disc* 2006;5:769; Prince et al. *Clin Canc Res* 2009;15:3958; Contreras et al, *J Biol Chem* 2009; 284: 6782; Archin et al. *AIDS Res Hum Retroviruses* 2009;25:207; Reuse et al., *PLos One* 2009;4:e6093; Burnett et al., *J Virol* 2010: 84: 5958-5974;

La thérapie épigénétique

La thérapie épigénétique

La thérapie épigénétique

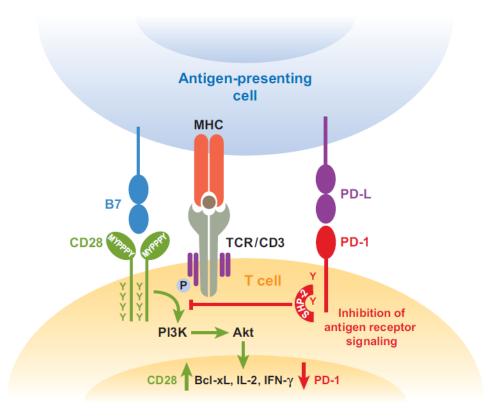
Certains cancers résultent d'altérations épigénétiques régulant anormalement l'expression des gènes suppreseurs des tumeurs


Un exemple dans le cancer de poumon

(Juergens et al, Cancer Discovery dec 2011)

Essai de phase 1-2: cancer du poumon azacitidine + entinostat: inhibiteur de méthylation de l'ADN, inhibiteur de désacétylation des histones Une bithérapie qui peut permettre de restaurer l'expression des gènes suppresseurs de tumeurs

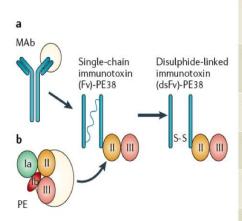
Résultats +++ chez quelques patients


Courtesy of JC Soria

The New Generation of drugs in Cancers

Hanahan D and Weinberg R Cell 2011

Voie de régulation négative PD-1



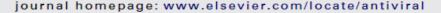
M Keir, Annu Rev Immunol, 2008

- PD-1 : membre de la famille des régulateurs des cellules T CD28/CTLA-4
- PD-1 est exprimé sur les T CD4 and T CD8 cellules B et myeloidescells, monocytes and DC
- -2 ligands connuspour PD-1: PD-L1 and PD-L2, massivement exprimés sur APCs.
- PD-1 et ses ligands régulent négativement la réponse immunitaire
- PD-1/PD-L1 interaction inhibe l'activation,
 l'expansion et l'acquisition de factors antiviraux des TCD8 (L. Trautmann et al, Nat. Med, 2006
 Day et al. Nature 2006)
- -Inhibition de la voie des TCR, inhibition globale des fonctions lymphocytaires

Tuer les cellules latentes

Recently Completed and Ongoing Immunotoxin Clinical Trials

Antigen targeted	Disease	Immunotoxin and characteristics	Clinical benefit/responses	Side-effects	Clinical status	Refs
IL2 (denileukin diftitox); IL2 fused to DT	CTCL, CLL and NHL	DAB389IL2	10% CR and 20% PR in patients with CTCL; 33% PR in patients with CLL; and 7% CR, 18% PR in patients with NHL (phase II study)	VLS and allergic reactions	DAB389IL2 approved by FDA for CTCL treatment	16-19
CD25 (subunit of IL2)	HCL, CLL, ATL, CTCL and NHL	Anti-tac(scFv)–PE38 (LMB- 2); Fv portion of anti-CD25 antibody fused to PE	20 (out of 35) patients received a dose > 60 µg per kg per cycle, resulting in 7 PRs and 1 CR (phase I study)	Fever and transaminase elevations	Phase II ongoing for HCL, CLL and CTCL at the NCI	23,24
CD25	HD	RFT5-dgA; anti-CD25 antibody linked to deglyco-sylated ricin-A- chain	2 PRs in 27 patients (phase I study)	VLS, fatigue and myalgia		27,29, 31,68
CD22	HCL, CLL and NHL	RFB4(dsFv)-PE38 (BL22); disulphide linked Fv portion of anti-CD22 antibody fused to PE	19 CRs and 6 PRs in 31 treated patients with HCL (phase I study)	HUS (reversible)	Phase II studies for HCL and CLL open at NCI	34,35
GMCSFR	AML	DT388-GMCSF; GMCSF fused to DT	1 CR and 2 PRs in 31 treated patients (phase I study)	Liver toxicity		39
Lewis Y	Adenocarcinomas	LMB-1; MAb B3 chemically attached to truncated PE	1 CR, 1 PR and 3 minor responses in 35 treated patients (phase I study)	VLS secondary to endothelial damage		44
Lewis Y	Adenocarcinomas	B3(Fv)–PE38 (LMB-7); single chain Fv of MAb B3 fused to PE	Not yet reported	Gastritis and renal toxicity		*
Lewis Y	Adenocarcinomas	B3(dsFv)–PE38 (LMB-9); disulphide stabilized Fv of MAb B3 fused to PE	Not yet reported	Renal toxicity		*
Lewis Y	Adenocarcinomas	BR96(sFv)-PE40 (SGN-10); BR96 scFv fused to PE40	Minor response in 1 out of 42 patients (phase I study)	GI (nausea, vomiting and diarrhoea)		46,69, 70
Mesothelin	Mesotheliomas, ovarain cancer and pancreatic cancer	SS1(dsFv)–PE38 (SS1P); anti-mesothelin Fv fused to PE38	Anti-tumour responses were seen in some patients using a continous infusion (completed) and bolus schedule (ongoing) (phase I studies)	Pleuritis	Planned NCI phase II studies in combination with chemo-therapy	52,53
IL4	Solid tumours that express IL4R and glioblastomas	IL4(38-37)PE38KDEL (NBI-3001)	Systemic administration — no response noted in 12 evaluable patients (phase I study); unacceptable level of toxicity in local therapy for glioblastoma (phase I and II study)	Liver toxicity		54,56, 57
IL13	Glioblastomas	IL13-PE38QQR	Local tumour perfusion		Phase III	61,71
IL13	Renalcell	IL13-PE389PRAntoine	Chéret		Abandoned	
EGFR	Glioblastomas	TP-38; TGFα fused to PE38	Local tumour perfusion		Phase II	58,60


INHIBER LA TRANSCRIPTION

Antiviral Research 89 (2011) 43-53

Contents lists available at ScienceDirect

Antiviral Research

Long-term inhibition of HIV-1 replication with RNA interference against cellular co-factors

Julia J.M. Eekels a, Dirk Geerts b, Rienk E. Jeeninga Ben Berkhout a,*

© The American Society of Gene Therapy

original article

Lentiviral Vector Design for Multiple shRNA Expression and Durable HIV-1 Inhibition

Olivier ter Brake¹, Karen 't Hooft¹, Ying Poi Liu¹, Mireille Centlivre¹, Karin Jasmijn von Eije¹ and Ben Berkhout¹

¹Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands

^a Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center of the University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands

b Department of Human Genetics, Academic Medical Center of the University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands

restaurer

nature biotechnology

Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to *CCR5* control HIV-1 *in vivo*

Nathalia Holt¹, Jianbin Wang², Kenneth Kim², Geoffrey Friedman², Xingchao Wang³, Vanessa Taupin³, Gay M Crooks⁴, Donald B Kohn⁴, Philip D Gregory², Michael C Holmes² & Paula M Cannon¹

Conclusion

Eradication / stérilisation :

Eliminer toutes les cellules infectées

- Activation des cellules infectées = mort
- Cibler le provirus : prostratine, HDAC.... Associés aux ARV (bloquer l'infection de nouvelles cellules)

« Shock and kill »

REMISSION: Modèle du cancer et HIV controllers

- Rendre l'infection non évolutive
- Réduire les réservoirs au maximum
- Bloquer l'expression des gènes
- Préserver le système immunitaire: TT très précoce

Patients VISCONTI: PTC

Ethique limite expérimentale